Constant Alternating Current Source

ωL

This shows that the output current is independent of the value of load resistance. Load voltage v_L leads input voltage by 90°.

$$X_{C} = \frac{1}{\omega C} \qquad X_{L} =$$

For $X_{C} = X_{L} = X$
$$\frac{1}{\omega C} = \omega L$$

$$\omega^{2} = \frac{1}{LC}$$

$$\omega = \sqrt{\frac{1}{LC}} \text{ r/s}$$

$$f = \frac{\omega}{2\pi} \text{ Hertz}$$

$$X = L\sqrt{\frac{1}{LC}}$$

$$X = \sqrt{\frac{L}{C}} \text{ ohm}$$

XY Mode

19-Jun-19 12:32

CH2 5.00V

Test 2

Load resistor 100Ω Load voltage about 4V peak-to-peak Measured $v_L = 0.773V$ Calculated $i_L = 7.73mA$

Test 3 Load resistor 200Ω Load voltage about 8V peak-to-peak Measured $v_L = 1.495V$ Calculated $i_L = 7.475mA$

Test 4 Load resistor 100Ω X/Y plot (ch1 X axis, ch2 Y axis)

This Lissasjous pattern shows that input and load voltages are at 90° to each other, as expected from the theory.

gnuplot software was used to generate these graphs (www.gnuplotting.org)

Impedance *X* ohms and the driving voltage determine the RMS value of the current.

Circuit components *L* and *C* determine impedance *X* ohms and the *frequency* of the input signal.

680

2

1500 nF

2.5

200

150

100

50

0

3