Silicon ChipWind power is no substitute for base-load generators - January 2010 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Wind power is no substitute for base-load generators
  4. Feature: The Automatic Identification System (AIS) in the Pilbara by Stan Swan
  5. Review: ScreenScope SSC-A531 Digital Scope by Mauro Grassi
  6. Feature: The Bureau Of Meteorology’s New Doppler Weather Radar by Ross Tester
  7. Project: A Multi-Function GPS Car Computer, Pt.1 by Geoff Graham
  8. Project: A Balanced Output Board for the Stereo DAC by Nicholas Vinen
  9. Project: Precision Temperature Logger & Controller, Pt.1 by Leonid Lerner
  10. Project: Voltage Interceptor For Cars With ECUs, Pt.2 by John Clarke
  11. Project: Web Server In a Box, Pt.3 by Mauro Grassi
  12. Vintage Radio: The impressive STC Capehart A8551 radiogram by Rodney Champness
  13. Book Store
  14. Outer Back Cover

This is only a preview of the January 2010 issue of Silicon Chip.

You can view 18 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Items relevant to "A Multi-Function GPS Car Computer, Pt.1":
  • GPS Car/Boat Computer PCB [05101101] (AUD $12.50)
  • PIC18F4550-I/P programmed for the GPS Car Computer [0510110E.HEX] (Programmed Microcontroller, AUD $20.00)
  • VK2828U7G5LF TTL GPS/GLONASS/GALILEO module with antenna and cable (Component, AUD $25.00)
  • Firmware (HEX file), source code and USB driver for the GPS Car Computer [0510110E.HEX] (Software, Free)
  • GPS Car/Boat Computer PCB pattern (PDF download) [05101101] (Free)
Articles in this series:
  • A Multi-Function GPS Car Computer, Pt.1 (January 2010)
  • A Multi-Function GPS Car Computer, Pt.2 (February 2010)
Items relevant to "A Balanced Output Board for the Stereo DAC":
  • 4-Output Universal Regulator PCB [18105151] (AUD $5.00)
  • High-Quality Stereo DAC Input PCB [01109091] (AUD $10.00)
  • High-Quality Stereo DAC main PCB [01109092] (AUD $10.00)
  • High-Quality Stereo DAC front panel PCB [01109093] (AUD $7.50)
  • ATmega48 programmed for the Stereo DAC [0110909A.HEX] (Programmed Microcontroller, AUD $15.00)
  • ATmega48 firmware and C source code for the Stereo DAC [0110909A.HEX] (Software, Free)
  • Stereo DAC Digital/Control board PCB pattern (PDF download) [01109091] (Free)
  • Stereo DAC Analog board PCB pattern (PDF download) [01109092] (Free)
  • Stereo DAC Switch board PCB pattern (PDF download) [01109093] (Free)
  • Stereo DAC Balanced Output Board PCB [01101101] (AUD $15.00)
  • DAC Balanced Output Board PCB pattern (PDF download) [01101101] (Free)
Articles in this series:
  • High-Quality Stereo Digital-To-Analog Converter, Pt.1 (September 2009)
  • High-Quality Stereo Digital-To-Analog Converter, Pt.2 (October 2009)
  • High-Quality Stereo Digital-To-Analog Converter, Pt.3 (November 2009)
  • A Balanced Output Board for the Stereo DAC (January 2010)
Items relevant to "Precision Temperature Logger & Controller, Pt.1":
  • Software for the Precision Temperature Logger and Controller (Free)
Articles in this series:
  • Precision Temperature Logger & Controller, Pt.1 (January 2010)
  • Precision Temperature Logger & Controller, Pt.2 (February 2010)
Items relevant to "Voltage Interceptor For Cars With ECUs, Pt.2":
  • PIC16F88-I/P programmed for the Voltage Interceptor [0511209A.HEX] (Programmed Microcontroller, AUD $15.00)
  • PIC18F88 firmware and ASM source code for the Voltage Interceptor [0511209A.HEX] (Software, Free)
  • Voltage Interceptor PCB pattern (PDF download) [05112091] (Free)
  • Voltage Interceptor front panel artwork (PDF download) (Free)
Articles in this series:
  • Voltage Interceptor For Cars With ECUs (December 2009)
  • Voltage Interceptor For Cars With ECUs, Pt.2 (January 2010)
Items relevant to "Web Server In a Box, Pt.3":
  • dsPIC33FJ64GP802-I/SP programmed for the Webserver in a Box (WIB) [0711109A.HEX] (Programmed Microcontroller, AUD $25.00)
  • Webserver in-a-Box (WIB) Programming Tables (PDF download) (Software, Free)
  • dsPIC33 firmware (HEX file) and website files for the Webserver in-a-Box project (Software, Free)
  • Webserver in-a-Box (WIB) PCB pattern (PDF download) [07111092] (Free)
  • Webserver in-a-Box (WIB) front panel artwork (PDF download) (Free)
Articles in this series:
  • WIB: Web Server In A Box, Pt.1 (November 2009)
  • WIB: Web Server In A Box, Pt.2 (December 2009)
  • Web Server In a Box, Pt.3 (January 2010)
  • Internet Time Display Module For The WIB (February 2010)
  • FAQs On The Web Server In A Box (WIB) (April 2010)

Purchase a printed copy of this issue for $10.00.

SILICON SILIC CHIP www.siliconchip.com.au Publisher & Editor-in-Chief Leo Simpson, B.Bus., FAICD Production Manager Greg Swain, B.Sc. (Hons.) Technical Editor John Clarke, B.E.(Elec.) Technical Staff Ross Tester Jim Rowe, B.A., B.Sc Mauro Grassi, B.Sc. (Hons), Ph.D Photography Ross Tester Reader Services Ann Morris Advertising Enquiries Glyn Smith Phone (02) 9939 3295 Mobile 0431 792 293 glyn<at>siliconchip.com.au Regular Contributors Brendan Akhurst Rodney Champness, VK3UG Mike Sheriff, B.Sc, VK2YFK Stan Swan SILICON CHIP is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 003 205 490. ABN 49 003 205 490. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Printing: Hannanprint, Noble Park, Victoria. Distribution: Network Distribution Company. Subscription rates: $94.50 per year in Australia. For overseas rates, see the order form in this issue. Editorial office: Unit 1, 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9939 3295. Fax (02) 9939 2648. E-mail: silicon<at>siliconchip.com.au ISSN 1030-2662 * Recommended and maximum price only. 2  Silicon Chip Publisher’s Letter Wind power is no substitute for base-load generators Back in the July 2009 issue we featured a story on Sydney’s water desalination plant together with a panel entitled “Where does the electricity come from?” As explained in the panel, the state government has decided to build wind farms to generate the power which would otherwise come from coal-fired base load power stations, albeit at a higher price. But in the this month’s Mailbag pages, reader Paul Miskelly points to the fallacy in this arrangement. Desalination plants must run continuously and therefore must draw their substantial electricity requirement from the grid all the time. Paul Miskelly has taken the trouble to analyse the figures for wind farm output and has produced graphs which clearly indicate that wind power is a very variable source – hardly suitable for running a desalination plant. It is stating the blindingly obvious to say that the wind does not blow all the time. But it doesn’t and for the politicians and public servants to try and pass off wind power as a “green solution” is just a lie. When the wind stops blowing, all the electricity required by the desalination plant must come from the coal-fired power stations. There are no ifs, buts or maybes. And one can envisage a situation where, if there was a major overload on the grid and the wind wasn’t blowing, the desalination plant would be one of the last to be subject to “load shedding”. In other words, normal commercial and domestic consumers will be blacked out long before the desalination plant. I remember some years ago having lunch with one of the magazine’s advertisers and the subject of the mooted Sydney desalination plant came up. I wondered out loud where the power for the plant should come from. Nuclear power was the instant and only practical answer. “Where should we put it?” was the next question. The immediate answer was “Right next to the desalination plant at Kurnell!” Then “How big should it be?” and the answer was “A bloody big one!” And while the answers to the questions may have been glib, they were absolutely correct and practical. Desalination plants need lots of power and nuclear plants can provide that power on a relatively small site with no air pollution at all. None. Since such a large amount of power is required, it makes sense to site the power plant right next to the desal plant, to minimise transmission losses. And since Sydney requires more base load power in any case, having the nuclear power station adjacent to the city also makes sense, to minimise transmission losses. That’s how they do it in many other parts of the world. Sadly, while everything we discussed was and is correct and practical, nothing like that is ever likely to eventuate even in the far future, given that State and Federal governments appear to be so inimical to the concept. But those people who say that we can rely more on renewable energy sources must face the fact that when those source are not available, such as when the wind is not blowing, then the base-load power stations must be able to take up all the slack. Unfortunately though, all of the interconnected electricity grid for the eastern states of Australia is running very close to capacity, especially in the summer months. Finally, those people who point to European countries which apparently have a much higher component of their electricity coming from wind power should realise that those same countries buy their electricity from nuclear-powered France when the wind doesn’t blow. Furthermore, those countries that have invested heavily in renewable energy, such as Spain with its government-mandated solar energy, are paying much more for their energy. That is now recognised as a gross misallocation of resources. Leo Simpson siliconchip.com.au