Silicon ChipFerrite beads are not inductors - May 2025 SILICON CHIP
  1. Contents
  2. Publisher's Letter: Ferrite beads are not inductors
  3. Feature: Techno Talk by Max the Magnificent
  4. Feature: A short history of Sinclair’s handheld calculators by Chris Morris
  5. Project: The Skill Tester 9000, part one by Phil Prosser
  6. Feature: Circuit Surgery by Ian Bell
  7. Review: Raspberry Pi 5 by Tim Blythman
  8. Project: DIY USB-C Serial Adaptor by Tim Blythman
  9. Feature: Max’s Cool Beans by Max the Magnificent
  10. Project: Three DC Supply Input Protectors by John Clarke
  11. Feature: Adding Solar Charging to a Renault Kangoo EV by Roderick Boswell
  12. Subscriptions
  13. Feature: Precision Electronics, part five by Andrew Levido
  14. Feature: Audio Out by Jake Rothman
  15. Feature: The Fox Report by Barry Fox
  16. Feature: The History of Electronics, part five by Dr David Maddison
  17. PartShop
  18. Advertising Index
  19. Market Centre
  20. Back Issues

This is only a preview of the May 2025 issue of Practical Electronics.

You can view 0 of the 80 pages in the full issue.

Articles in this series:
  • (November 2020)
  • Techno Talk (December 2020)
  • Techno Talk (January 2021)
  • Techno Talk (February 2021)
  • Techno Talk (March 2021)
  • Techno Talk (April 2021)
  • Techno Talk (May 2021)
  • Techno Talk (June 2021)
  • Techno Talk (July 2021)
  • Techno Talk (August 2021)
  • Techno Talk (September 2021)
  • Techno Talk (October 2021)
  • Techno Talk (November 2021)
  • Techno Talk (December 2021)
  • Communing with nature (January 2022)
  • Should we be worried? (February 2022)
  • How resilient is your lifeline? (March 2022)
  • Go eco, get ethical! (April 2022)
  • From nano to bio (May 2022)
  • Positivity follows the gloom (June 2022)
  • Mixed menu (July 2022)
  • Time for a total rethink? (August 2022)
  • What’s in a name? (September 2022)
  • Forget leaves on the line! (October 2022)
  • Giant Boost for Batteries (December 2022)
  • Raudive Voices Revisited (January 2023)
  • A thousand words (February 2023)
  • It’s handover time (March 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • Prophecy can be perplexing (May 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • How long until we’re all out of work? (August 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • Holy Spheres, Batman! (October 2023)
  • Where’s my pneumatic car? (November 2023)
  • Good grief! (December 2023)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (February 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk (July 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk (November 2024)
  • Techno Talk (December 2024)
  • Techno Talk (January 2025)
  • Techno Talk (February 2025)
  • Techno Talk (March 2025)
  • Techno Talk (April 2025)
  • Techno Talk (May 2025)
  • Techno Talk (June 2025)
Items relevant to "The Skill Tester 9000, part one":
  • Skill Tester 9000 PCB [08101241] (AUD $15.00)
  • Skill Tester 9000 PCB pattern (PDF download) [08101241] (Free)
Articles in this series:
  • Skill Tester 9000, Pt1 (April 2024)
  • Skill Tester 9000, Part 2 (May 2024)
  • The Skill Tester 9000, part one (May 2025)
  • Skill Tester 9000, Part 2 (June 2025)
Articles in this series:
  • Circuit Surgery (April 2024)
  • STEWART OF READING (April 2024)
  • Circuit Surgery (May 2024)
  • Circuit Surgery (June 2024)
  • Circuit Surgery (July 2024)
  • Circuit Surgery (August 2024)
  • Circuit Surgery (September 2024)
  • Circuit Surgery (October 2024)
  • Circuit Surgery (November 2024)
  • Circuit Surgery (December 2024)
  • Circuit Surgery (January 2025)
  • Circuit Surgery (February 2025)
  • Circuit Surgery (March 2025)
  • Circuit Surgery (April 2025)
  • Circuit Surgery (May 2025)
  • Circuit Surgery (June 2025)
Articles in this series:
  • Max’s Cool Beans (January 2025)
  • Max’s Cool Beans (February 2025)
  • Max’s Cool Beans (March 2025)
  • Max’s Cool Beans (April 2025)
  • Max’s Cool Beans (May 2025)
  • Max’s Cool Beans (June 2025)
Articles in this series:
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, part six (June 2025)
Articles in this series:
  • Audio Out (January 2024)
  • Audio Out (February 2024)
  • AUDIO OUT (April 2024)
  • Audio Out (May 2024)
  • Audio Out (June 2024)
  • Audio Out (July 2024)
  • Audio Out (August 2024)
  • Audio Out (September 2024)
  • Audio Out (October 2024)
  • Audio Out (March 2025)
  • Audio Out (April 2025)
  • Audio Out (May 2025)
  • Audio Out (June 2025)
Articles in this series:
  • The Fox Report (July 2024)
  • The Fox Report (September 2024)
  • The Fox Report (October 2024)
  • The Fox Report (November 2024)
  • The Fox Report (December 2024)
  • The Fox Report (January 2025)
  • The Fox Report (February 2025)
  • The Fox Report (March 2025)
  • The Fox Report (April 2025)
  • The Fox Report (May 2025)
Articles in this series:
  • The History of Electronics, Pt1 (October 2023)
  • The History of Electronics, Pt2 (November 2023)
  • The History of Electronics, Pt3 (December 2023)
  • The History of Electronics, part one (January 2025)
  • The History of Electronics, part two (February 2025)
  • The History of Electronics, part three (March 2025)
  • The History of Electronics, part four (April 2025)
  • The History of Electronics, part five (May 2025)
  • The History of Electronics, part six (June 2025)
Practical Electronics Editorial offices Electron Publishing (Aust.) Tel +61 2 9939 3295 Unit 1, 234 Harbord Road Email pe<at>pemag.au Brookvale NSW 2100 Web www.electronpublishing.com Australia Address mail to: Electron Publishing (Australia) PO Box 194, Matraville NSW 2036 Australia Advertising enquiries +61 2 9939 3295 pe<at>pemag.au Editor Nicholas Vinen Publisher Nicholas Vinen Digital subscriptions Stewart Kearn Tel 07918 614662 Online Editor Alan Winstanley Web Systems Kris Thain Production Bao Smith Technical staff Tim Blythman, John Clarke Print subscriptions Practical Electronics Subscriptions PO Box 6337 Bournemouth BH1 9EH Tel 01202 087631 United Kingdom Email pesubs<at>selectps.com Technical enquiries We regret that technical enquiries cannot be answered over the telephone. We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. Questions about articles or projects should be sent to the editor by email: pe<at>pemag.au Projects and circuits All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Some projects and circuits published in Practical Electronics employ voltages that can be lethal. Do not build, test, modify or fix any mains-powered equipment unless you fully understand the safety aspects involved and you use an RCD (GFCI) adaptor. Component supplies Silicon Chip Publications may offer kits or other parts for making our projects, but not in all cases. When kits are not available, readers will need to find and source parts themselves. We advise readers to check that all parts are still available before commencing any project in a back-dated issue. Advertisements Although the proprietors and staff of Practical Electronics take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts. The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Transmitters/bugs/telephone equipment We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment, as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws. 2 Volume 54. No. 5 May 2025 ISSN 2632 573X Editorial Ferrite beads are not inductors I often see ferrite beads drawn in circuit diagrams as if they are inductors, with “Lx” designators. While many circuit designers likely realise that they are not true inductors, treating them as such could cause confusion, especially for those reading the diagrams. This might lead them to assume that a ferrite bead is just another type of inductor, when in reality, it serves a very different purpose. Ferrite beads exhibit some inductance – as do most components, including wires and PCB tracks – but their operation does not rely on it. At their simplest, ferrite beads are just a piece of wire passing close to (or through a hole in) a piece of ferrite. Some of the confusion may stem from the fact that ferrite is used as a core material in high-frequency inductors and transformers. However, in those applications, the ferrite core is surrounded by multiple turns of wire to create significant inductance. A ferrite bead has just one or a few turns and thus a relatively low inductance. Ferrite itself is a ceramic material that contains iron oxide. Like other magnetic core materials, it provides a path for magnetic flux, but only up to a certain frequency. Beyond that, ferrite becomes highly ‘lossy’, converting much of the magnetic energy to heat. Ferrite beads take advantage of this property to suppress unwanted high-frequency signals by dissipating their energy, effectively acting as a frequency-dependent resistor rather than an inductor. Unlike an inductor, a ferrite bead does not store energy or resonate. It simply increases its resistance in a targeted frequency range to block unwanted signals. So, rather than thinking of ferrite beads as inductors, it’s more accurate to consider them as a lossy impedance element that selectively dampens high-frequency signals. That distinction matters in terms of circuit design and how we draw them. New telephone number for digital subs & shop items Please note the new telephone number (shown opposite in red). You will have a better chance of getting a hold of Stewart via this new number. The number for print subscriptions (via Select Publisher Services) has not changed. Nicholas Vinen, Electron Publishing (Australia)* Publisher & Editor, Practical Electronics Magazine * a division of Silicon Chip Publications Pty Ltd. Practical Electronics | May | 2025